If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-6x-45=0
a = 7; b = -6; c = -45;
Δ = b2-4ac
Δ = -62-4·7·(-45)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-36}{2*7}=\frac{-30}{14} =-2+1/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+36}{2*7}=\frac{42}{14} =3 $
| 〖(m〗^3+〖m〗^2-7m+15)=0 | | 2c/3+1=7 | | 6n/2-3n/2=31/2 | | -2+x=-2=2x | | -1=4+x/9 | | |2/3x+4|=6 | | 55/x=93.75 | | a(150)^2=38 | | |7x-3|=2 | | X+3x=x+x+x10 | | x64+6x^2-27=0 | | (2*9/7)*x+2*x=384 | | 8x-2-3+3x=9x+18+1 | | 7x-352(x=5) | | (-3/8)m=-24 | | 38=a(150)^2 | | -16=2/5m | | 7x+6=4x+10 | | -3/8m=24 | | 8(x-2)-3(1-x)=9(×+2)+1 | | -37=11+(-4x) | | (0,100+x)(0,040+x)/(0,200-x)=5,8*10^-2 | | 5/x=8.3 | | -X+17+15x=13+7x-5 | | 1.5b=2 | | -3z+-4=6z-9+-6 | | 3(3x-4)=+45+15 | | 3(3x-4)=+4515 | | 4^-8x=64 | | (D^4+4D^3-5D^2-36D-36)y=0 | | 35=w/3+16 | | (0,100x)(0,040x)/0,200-x=0,058 |